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Abstract 

In a previous article (Gruber, 1971), the author considered what the operator form of the 
generalized canonical momenta was is quantum mechanics. As noted in the article, 
Pauli (1950), through a different method, found what the generalized momentum operator 
was also, and both results (the author's and Pauli's) were in agreement. However, the 
prescription of incorporating the momentum operator into the Hamiltonian, in some 
cases does not give the correct form of the Hamiltonian operator. In the present article, 
the author finds exactly how to incorporate the total momentum operatorpg~ = -ih O/Oq~ 
into the generalized classical Hamiltonian to get the correct quantum mechanical 
Hamiltonian operator for all cases. The author also shows a clear-cut way of making the 
transition from classical observable functions of the canonical momenta to their quantum 
mechanical operator analogs, in generalized spaces. 

1. Introduction 

In  a previous  art icle (Gruber ,  1971) by  the author ,  a s ta tement  was made  
concerning  the general ized m o m e n t a  in quan tum mechanics.  I t  was s tated 
tha t  the ope ra to r  fo rm o f  the general ized m o m e n t u m  pq, cor responding  to 
the general ized coord ina te  q, was jus t  the Hermi t i an  pa r t  o f  the ope ra to r  
-ihO/Oq. We also showed tha t  the Hermi t i an  pa r t  o f  the ope ra to r  
- ih  O/Oq, Pq n, could  be expressed in the fo rm 

u . 1 0 i 
Pq = - - l h g - - ~ q ( g / 2  (1.1) 

where g is the Jacob ian  ]axi/Oq~] of  the t r ans fo rmat ion  f rom Car tes ian  to  
general ized coord ina tes  (q~). We  have no ted  in the a forement ioned  art icle 
(Gruber ,  1971) tha t  Paul i  (1950) also arrives at  equat ion  (1.1) via a different 
method .  However ,  much  to our  surprise,  equat ion  (1.1) does no t  h o l d t  

t When we insert the operator 
( ih 1 0(~/r~ 2 

(p~)2 = \ -  ~-~Or ] 

into the two-dimensional classical Hamiltonian we do not get the correct operator form 
of the Hamiltonian. 
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when we consider the square of the momentum, pr z, corresponding to the 
radial coordinate in two dimensions. That is in two dimensions (g = r) 

�9 1 ~ . 1 0 
pr 2 # - ,h ~-} ~r (v'r  (- th ~-} ~r v 'r  

In the following sections we proceed to find what the generalized momentum 
operator 'squared' is for all spaces and show exactly how we incorporate the 
operators P~ = -ih O/Oq into the Hamiltonian to get the correct transition 
from classical to quantum mechanics. 

2. Representation of Generalized Momenta in Quantum Theory 

In the aforementioned article (Gruber, 1971) we commenced by showing 
that if one substitutes the operators p, ~-ihO/Or, Po ~-iha/aO, and 
pr ~ - ih 0 / ~  in the classical Hamiltonian, H, given by 

H =  p2 + po 2 p(2 
2m ~ -~ 2mr 2 sin 20 

we do not get the correct quantum-mechanical operator corresponding to 
the Hamiltonian, which is given by 

h 2 ( a 2 1 02 1 02 2 a cot 0 ~ \ 
H = - ~--~m k~rr 2 + ~-2 ~-02 -t r2sin2Oa~E+r~r+--~--~) 

Thus the question that was asked was 'What is the correct form of the 
momentum operator in generalized coordinates?' Furthermore we must 
ask the question (which was only superficially investigated in the previously 
mentioned articles (Gruber, 1971; Pauli, !950)), how do we incorporate 
these operators in the classical Hamiltonian to get the correct quantum 
mechanical description ? 

The classical Hamiltonian, H, in generalized coordinates is given by 
(Brillouin, 1949) 

1 ~ "  ~k 
H=2-mm z..., P~g P~ (2.1) 

l,,g 

where g~k (a symmetric tensor) is a function of the generalized coordinates 
q~ and pq~ is the generalized momentum corresponding to the coordinate q~. 
m is the mass of the particle. Since H is positive-definite, we wilt be more 
general and accurate in writing H as 

1 ~P~g P~k ( 2 . 2 )  H = ~  m * l~ 
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(U* denotes the complex conjugate of U.) We now postulate (as in the 
author's previous article) that the total quantum-mechanical momentum 
operator pq, corresponding to the generalized coordinate q~ is given as 

pq, = - ih  ~q t (2.3) 

where the 'measurable' momentum operator is just the Hermitian part of 
the operator pq~ as noted in Gruber, 1971. 

Equation (2.2) suggests that the quantum-mechanical operator corres- 
ponding to the Hamiltonian H, be given as 

1 ~p~,g,kp~ k (2.4) H=~m 
where p*q~ denotes the adjoint of the operator p~. This is analogous to p*, 
being the complex conjugate ofpq~ equation (2.2). Note that the 'square' 
of the momentum operator corresponding to coordinate q~ is just ptq~pq~. 
Also note in general, that the 'true' product of momentum operators 
pt~,p~,, is the Hermitian part, (p,q.pq~)n, of the operator ptq,p~,. That is, 
(Pt~,Pqk) = (Ptq,Pq~ +ptq~pq,)/2, since A n = (A + At)/2 for an operator A. 
This is analogous to saying that the 'true' physical value of the classical 
product of momentums, P*tPqk, is the real part of the product p*~p~. 

In the author's previous article, p. 230, we found that the adjoint operator 
dt~ was given as 

pt~,= - i h ( o ~ i +  l Og~ 
�9 g~-~qff ( 2 . 5 )  

where g is the Jacobian ]axJOq~] (Sokolnikoff, 1951) of the transformation 
of Cartesian to generalized coordinates. Equation (2.5) can be obtained 
(see Gruber, 1971, pp. 229-230) by first defining the adjoint operator At 
through the integral equation 

f r f r (2.6) 
all V all V 

(where dV=gdq~dq2dq3 ...; in three dimensions, d V = d x d y d z =  
gdq, dqz dq3) and then substituting A = - i h  a/Oq, = pq, in equation (2.6). 

3. Correct Incorporation of Quantum Mechanical Momenta in 
Hamiltonian 

We note that the standard way of obtaining the Hamiltonian operator, 
-(hZ/2m)V 2 = 1t, in generalized coordinates is by performing a coordinate 
transformation of the operator -(hZ/2m)V z from Cartesian to generalized 
coordinates. Thus the operator H is given as (Blokhintsev, 1964) 

h2 ~ * 1  0 [ ik O~ 
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Substituting ptq~ as given by equation (2.5) into the Hamiltonian given by 
equation (2.4), we obtain 

h 2 ~ - ' [ 0  l o g \  ik 0 

g N l,k 

h z ~ Og 'g 0 0 z lOgg,g  0_0_ 
- - -  + gikx----~- + (3.2) 

~m Oq~ Oqg oq~ oqk g Oq~ Oqk 

Thus H in equation (3.2) is identical to H given by equation (3.1) and we 
therefore obtain the correct representation of the Hamiltonian operator by 
our prescription of the momentum operator. 

4. Consequences 

In quantum theory, the generalized momentum operator 'squared', 
* " ? 

analogous to p~pq~, is pq~p~, and is given as 

~2 [ 0 I Og\ 0 (4.1) 

Equation (4.1) may be rewritten as 

, 2, , ~2[1 0 [ a ~ \  p,, =pq,pq, = - n  ~g~q~ ~ g~-~q~}} (4.2) 

From equation (4.2), it is readily seen that in two dimensions (g = r) the 
correct form of the operator 'pr 2' (that is, Pr*Pr) in the corresponding 
Hamiltonian is given as 

h z 0 0 
,p2, = p , p ,  r orror  

Similarly, in three dimensions (g = r 2 sin 0) the correct operator form of the 
momenta 'PrZ' and 'po 2' in the corresponding three-dimensional Hamil- 
tonian are given as respectively 

h 2 0 1 2 0  ~ 
' pr2 ' = Pr~ Pr r 2 fir % r fir) 

"Po E, = Po*Po sin 0 O0 sin 0 

5. Comments and Discussion 

We have shown in confirmation with the previous article (Gruber, 1971) 
that the correct operator form of the 'true' physical momentum in general- 
ized coordinates is given as the Hermitian part of the operatorp~ i = - ih  O/Oq~. 
It is very interesting to note that classically, the product of generalized 
momentum operators, p~pq~ in an observable quantity such as the Hamil- 
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tonian, is really to be represented as Pq,Pqk whose quantum mechanical 
operator analog is the Hermitian part of the operator ptq,pa,, (p ,p~)u .  Note 
that (p~,p~,)n = (ptpq,  + p*q,pa,)/2. Here, pq, = - i h  O/Oq,. Thus the quantity 

' classically, if it is to have physical significance, is represented by 
~ whose quantum operator analog t n _  t mechanical is (pa~pq,) - p~p~, 

where, as before, pa, = - i h  O/aq,. The quantum mechanical operator analog 
for the momentum pq, (which classically could also be represented as p~) is 
(pq,)n = (-iiia/Oq,) n or if the momentum is classically represented as p**, 
the quantum mechanical operator analog would be (p~,)n which is shown to 
be equal to (pa)n. Finally the generalized quantum mechanical Hamiltonian 
operator is written as 

H 1 = - -  nt ~ i k .  

Tram /_, /"ql  '~ Yq~ 

where the generalized classical Hamiltonian is given as 

H 1 : - -  n* a~kn 
Tm /_,  

f,k 

It is indeed interesting to see that the structure of the quantum mechanical 
Hamiltonian operator is based on products ofptq, and p~ whereas the struc- 
ture of the quantum mechanical 'observable' generalized momentum 
operator is based on a sum of the total momentum operator, Pa~ = - ih  O/Oq~ 
and its adjoint p~,. 
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